
Fermilab FERMILAB-TM-2140 January 2001

New Multithreaded Code for Calculating Longitudinal

Collective Instabilites using Computers with Multiprocessors

Cheng-Yang Tan

Beams Division/Tevatron

ABSTRACT: We have developed a new mulithreaded code with pthreads for

calculating longitudinal collective instabilites on computers with multiprocessors.

We have selected pthreads as the basis for multiprocessing because it is portable,

as such we are able to port this code to Solaris, IRIX and OS/2 platforms. We will

demonstrate that when there are four cavities and 36 bunches in the simulation,

our code shows a speed increase of > 3� compared to single processor code when

run on a symmetric multiprocessing (smp) machine.

INTRODUCTION

There are many well established codes used in longitudinal simulations of beam insta-

bilities, like ESME1, which run on a single processor. With the introduction of computers

with many processors (multiprocessors) like SUN Sparcs with four or more processors, it

seemed to be a waste not to use the other processors in our simulations. Modern work-

stations with many processors are usually symmetric multiprocessingy and the vendors

have written their operating systems to support this architecture. This means that the

vendor has already written the appropriate libraries which allow the programmer to easily

write programmes which can run on multiprocessors. The usual challenge which faces

the physicist is to come up with a parallel processing algorithm which takes advantage

of the hardware. We will show in this paper that for longitudinal simulations with many

RF cavities, the parallel algorithm which we will choose is very natural and indeed takes

advantage of the multiprocessor machine. The next challenge which we will face is the

choice of libraries and language. The choice for us will again obvious: we will choose a

library which is cross-platform and an object-oriented language.

We will, in the rest of the paper, introduce the idea of threads and the pipeline model

used in the simulation. Plus results we will use to check that our results are correct when

compared with established theory. And of course, the speed increases compared with

single processor code.

y Symmetric multiprocessing (smp) means that all CPUs are treated the same, as opposed
to asymetric multiprocessing where some CPUs are special and others which are slaves.

2

THREADS

A thread is de�ned as a sequence of instructions to be executed within a programme.

Most programmes are single threaded code which consists of one thread of execution which

starts in main(). Before the invention of threads, the UNIX way of doing things in parallel

is to use the fork/exec model. This model spawned several processes each a thread of

execution which can then be run in parallel. However, each new process that is created

by fork/exec require the operating system to make a child process from its parent process

by copying over the instruction, user-data and system-data segments of the parent and

then executing the child process as well as the parent process. This method is expensive

because of the overhead required for each process creation. Furthermore, communication

between parent and child need external channels like pipes, sockets, memory maps (mmaps)

etc. because resources held by parent and child are private and neither parent or child can

peek into each others resources without using these mechanisms. The fork/exec model can

therefore be thought of as many processes each having its own thread of execution.

Contrast this with a multithreaded programme where there is one process with many

threads of execution. This means that di�erent parts of the same code can be executing

in parallel. The advantages over fork/exec are immediate : all threads share the same

resources and the overhead of creating a new process is eliminated. The downside is that

because all threads share the same resources, there must be software mechanisms, like locks

and semaphores, which preserve the integrity of the data and prevent race and deadlock

conditions. For example, suppose there are two threads A and B which use a piece of shared

data. At some point in the process, thread A updates the data, so thread A must prevent

thread B from reading the data before thread A completes the update, i.e. prevention of a

race condition. Furthermore, if a situation arises where thread A cannot �nish the update

unless thread B reads the data then we have a deadlock condition. This means that our

3

application is stuck in a never ending wait between threads A and B. To prevent these type

of problems, judicious use of locks and semaphores is essential. Unfortunately, this adds to

the overhead of multithreaded code when compared with single threaded code which means

that there are scenarios where single threaded code will run faster than multithreaded code.

Pthreads

POSIX threads or pthreads is a cross-platform implementation of threads whose pro-

gramming interface is speci�ed by IEEE POSIX 1003:1c standard (1995). This standard-

ization allow us to port the code with minimal changes to two distinct UNIX platforms:

Solaris, IRIX and one PC platform: OS/2. Although pthreads is highly portable, there

are some shortcomings. For example, a feature which we have thought will be useful is

the explicit speci�cation of the mapping between thread and CPU. This feature does not

exist in pthreads and thus under this programming environment, the programmer defers

the dispatch of threads to CPUs to the operating system. If the programmer really wants

to force a thread to a CPU, (s)he must use non-portable system calls.

4

MODEL

We will describe here the pipeline model used to parallelize the longitudinal simulation

code. The pipeline model, which is extremely similar to the Ford assembly line, is shown

in Figure 1. We start �rst with a computer with M processors. For illustration, let us

suppose that in our simulations we have 1 < n � M RF cavities. We can naturally place

a single thread of RF cavity code on each CPU as shown in Figure 1. We suppose that we

have N bunches numbered bunch0, bunch1,: : :, bunch(N � 1) for the simulation. At the

start of the simulation, we put bunch0 into RF Cavity 0 with the other bunches waiting

to be processed. Once RF Cavity 0 is done with bunch0, it is sent to RF Cavity 1 and

bunch1 is sent into RF Cavity 0. Both RF Cavity 0 and RF Cavity 1 can then work

on their bunches in parallel. Once RF Cavities 0 and 1 are done with their respective

bunches, bunch0 goes to RF Cavity 2, bunch1 goes into RF Cavity 1 and bunch2 goes

into RF Cavity 0 where they are again processed in parallel. As this process is repeated

for the remaining bunches, we can see that eventually all the processors will be working in

parallel. The RF cavities themselves form a pipeline and the bunches propagate through

this pipeline starting from RF Cavity 0 and move towards RF Cavity(n� 1) which is at

the end of the pipeline. The �rst bunch to reach the end is bunch0 which means that

bunch0 has completed one turn through the accelerator and is ready to be fed back into

the beginning of the pipeline at RF Cavity 0 again. This is done ad in�nitum for all the

bunches until the required number of turns have been met.

The advantage of this model is that when there is more than one CPU in the computer

and more than one RF cavity in the simulation we can eÆciently utilize the computer

resources to speed up the calculations by placing a thread on each CPU. However, when

there is only one RF cavity in the simulation, the overhead used to set up and maintain

the pipeline, which basically consists of one thread only, will be much greater than sin-

5

Figure 1 This �gure shows the pipeline model used in the simula-

tion. Each RF cavity is placed on a CPU and each bunch is evolved

through each cavity like a pipeline.

gle threaded code. This means that the simulation will run slower using multithreaded

code compared with single threaded code. Similarly, for the case when there is only one

CPU and many RF cavities in the simulation, i.e. many threads and one CPU, there is

also a comparable slowdown.

It is also important to keep the pipeline from stalling. Consider the case when there

is only one bunch and many RF cavities. Then all the RF cavities except one are sitting

idle in the simulation, thus again the thread overhead overwhelms any advantage of using

multiprocessors. We can always tell that the pipeline is stalled because when the number

of bunches is increased with the number of RF cavities �xed, the speed of the simulation

will increase and tend to an asymptotic limit which is when all the CPUs in the pipeline

6

are working with full steam.

Finally, it is also not too much of a stretch of the imagination to think of each RF cavity

as an object which is mapped to each CPU and each bunch is an object which is manipu-

lated by each RF cavity. Thus the natural language to code the simulation in is in some

object oriented language like C++.

7

THEORY

The equations of motion for longitudinal macro-particle tracking have been derived

in many places. We quote from Edwards the equations of motion when there is only one

RF cavity in the system. These equations can be easily be generalized to many RF cavities

�n+1 = �n + �!rf�n+1

�
�p

p

�
n+1

En = En + eV sin�n

9>=
>; (1)

where

�n is the phase accumulated by the particle after going through one turn.

� is the slip factor.

!rf is the RF frequency.

�n is the time taken by the particle to go through the nth turn.

(�p=p)n is the fractional change in momentum between the particle and the

synchrononous particle in the nth turn.

En is the energy of the particle in the nth turn.

V is the voltage of the cavity.

Besides (1), we also need to know how the resonant modes of the cavity kick the bunch

as it goes through the cavity. This is calculated using the wake function W 0
0
(z) quoted

from Chao

W 0
0(z) =

8>>>><
>>>>:

0

�Rs

2�Rse
�z=c

�
cos

�!z

c
+
�

�!
sin

�!z

c

�

if z > 0,

if z = 0,

if z < 0.

(2)

where � = !r=2Q, and �! =
p
!2r � �

2, Rs is the shunt impedance and Q is the quality

factor of the resonance. z = s� ct is the position of the particle w.r.t. reference particle.

These two set of equations form the backbone of how the particles in the bunches

evolve as they go through the accelerator. To verify that the solution from the simulation

8

at least agrees with simple cases where there are analytic solutions, we use the solutions

from Sacherer who has calculated the growth rate for coupled bunch modes. The formul�

which we quote below is a particular form of Sacherer's formula which is derived by Ng.

Suppose we have a phase space (x;�E) distribution of a bunch which can be sepa-

rated into a stationary part 0 and a perturbed part 1 i.e.

 (x;�E; s) = 0(x;�E) + 1(x;�E; s) (3)

where s is the position of the synchronous particle. Then if we assume that the solution

is sinusoidal in time, then Sacherer showed that

growth of 1 � et=�m;� (4)

where 1=�m;� is the growth rate of the �'th coupled bunch mode from the mth pole

phase space oscillation. In particular, the formula for the growth rate due to dipole modes

to �rst order for M equally spaced bunches is

1=�1;� =
�e2NM!r

2�2E0�
2
0
!s

h
ReZ

jj
0
(qM!0 + �! + !s)� ReZ

jj
0
(q0M!0 � �! + !s)

i
(5)

where
0 � � < M is the �'th coupled bunch mode.

N is the number of particles in a bunch.

M is the number of bunches.

q is the revolution harmonic.

!0 is the revolution frequency.

!r is the frequency of the resonance.

!s is the synchrotron frequency.

�0 is the revolution period.

E0 is the energy of the bunch.

9

and Z
jj
0
is the longitudinal impedance of the mode. For sharp resonances which can be

approximated with an RLC resonator, Z
jj
0
can be modeled as

Z
jj
0
(!) =

Rs

1 + iQ
�
!r
! �

!
!r

� (6)

where Rs is the shunt impedance and Q is the loaded quality factor of the resonance.

It must be emphasised that the theory is only valid for equally spaced bunches. When

the bunches are not equally spaced, the theory is still good at giving qualitative growth or

damping results.

In particular when � = 0, we can see that the sign of 1=�1;0 is dependent on which

side the resonance !r is w.r.t. the revolution harmonic qM!0. See Figure 2. Above

transition, � > 0 and if ReZ
jj
0
at the upper synchrotron sideband is larger than at the

lower synchrotron sideband, the system is unstable because 1=�1;0 > 0. The system will

be stable if 1=�1;0 < 0 when ReZ
jj
0
at the upper synchrotron sideband is smaller than at

the lower synchrotron sideband.

Figure 2 This �gure shows how the position of the resonance

w.r.t. the revolution harmonic qM!0 a�ects the sign of 1=�1;0. Above

transition (a) is unstable and (b) is stable in this �gure.

10

Check

Using the results shown above, we checked our simulation with (5) for the case when

we have three equally spaced point bunches in the simulation. The resonances and other

parameters used in the simulation are shown in Table 1. We can see from Figure 3 that

theoretical damping and growth rates are very close to the results of the simulation for

short time scales. As time gets longer, the theory and simulation start disagreeing. This

should not be too surprising because Sacherer's theory only gives a �rst order result plus

it is only valid at the start of the instability.

Table 1. Parameters used in the simulation

Symbol Description Value

� coupled bunch mode 0

N # particles in one bunch 2:7� 1011

M # of bunches 3

q revolution harmonic # 2174

E0 Energy of the bunch 150 GeV

!0 revolution frequency (2� � 47:7125� 103) s�1

!s synchrotron frequency (2� � 88:296) s�1

!r frequency of the stable resonance 311:180 MHz

frequency of the unstable resonance 311:183 MHz

Rs shunt impedance of the resonance 1:73 M

Q loaded quality factor of the resonance 134� 103

Using the values in Table 1, and substituting them into (5) we �nd that for the stable

resonance, 1=�1;0 = �1:573 s
�1, while for the unstable resonance 1=�1;0 = +0:537 s�1.

11

Figure 3 The simulation results and the theoretical growth rates

are shown here. The top two graphs show the case when we have

Robinson stability, and the bottom two graphs when we have Robin-

son instability (the particle leaves the bucket at about 5:5s).

12

SPEED RESULTS

For amusement we show the results of top in Figure 4. This shows that our programme

bl is using 330% more CPU than the next highest user thus leaving him in the dust! For a

de�nitive check of the speedups, we compare completion times with single threaded code

and multithreaded code and saw > 3� increase in speed when we have four RF cavities

and 36 bunches in the simulation. Table 2 shows the actual speed increase with timed

results on a Sparc workstation with six processors (unfortunately we can only use four, see

CONCLUSION for the reason) and running SunOS 5:6. We de�ne the speedup factor to

mean

speedup factor =
completion wall-clock time with single thread

completion wall-clock time with multithreads
(7)

Notice from Table 2 that there is a cross-over point when a single threaded simulation is

faster than a multithreaded simulation when we have two RF cavities and < 4 bunches in

the simulation. The single threaded simulation is faster than the multithreaded simulation

because the pipeline is stalled from too few bunches.

The other extreme case is when we have more RF cavities than CPUs, which is illus-

trated with the eight RF cavities case, and even then, the multithreaded performance is

still much better than single threaded performance.

Table 2. Comparison between single and multithreaded performance

RF cavities # CPUs used # bunches speedup factor

8 4 36 3:2�

4 4 36 3:2�

2 2 36 1:7�

2 2 8 1:2�

2 2 4 1:0�

2 2 2 0:5�

13

Figure 4 This shows the output of top which is used to monitor

CPU usage. As can be seen from the line containing USERNAME

cytan, our programme bl is using 332:8% CPU while other users are

using < 100% CPU. This particular machine has 16 CPUs and we are

using 4 RF cavities and 36 bunches in the simulation.

CONCLUSION

As can be seen from Table 2, the speedup factor is dependent on the number of RF cav-

ities as well as the number of bunches. Thus to determine whether there is an advantage

in doing a simulation with multiprocessors, we must �rst do a computation with a short

simulation time to determine which method is better before committing ourselves. Fur-

thermore, not only do we have to consider the non-linear scaling between the speedup

factor and the number of CPUs, there are also hard and soft speed limits which prevent

us from going in�nitely fast

(i) A hardware limit which is the overhead in communications between processors.

Even when we have four available processors on the Sparc to simulate four RF cav-

ities, we do not get 4� increase in speed.

(ii) A software limit put in by the system administrators which prevent us CPU hogs

from using more than four processors.

14

Notwithstanding the above two limits, we have shown that multithreaded code which

runs on modern smp machines can indeed make our simulations run much faster and clearly

in the 21st century this is the way to go.

ACKNOWLEDGEMENTS

The author wishes to thank Jim MacLachlan and King-Yuen Ng for many hours of

fruitful discussions.

REFERENCES

[1] ESME , J.A. MacLachlan, http://www-ap.fnal.gov/ESME.

[2] An Introduction to the Physics of High Energy Accelerators, D.A. Edwards and

M.J. Syphers, Wiley Series in Beam Physics, 1993.

[3] Physics of Collective Beam Instabilities in High Energy Accelerators, A.W. Chao,

Wiley Series in Beam Physics, 1993.

[4] Introduction to Collective Instabilities { Longitudinal and Transverse, K.Y. Ng,

TM-2053.

[5] Programming with POSIX Threads, D.Y. Butenhof, Addison Wesley Publishing

Company, 1997.

15

